

SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY::PUTTUR (AUTONOMOUS)

OUESTION BANK (DESCRIPTIVE)

Subject with Code: Data Structures using C(25MC9104) **Course & Branch**: MCA

Year & Sem: I-MCA & I-Sem **Regulation:** R25

UNIT -I INTRODUCTION TO C LANGUAGE

1	a)	List the basic elements of the C programming language with examples.	[L1][CO1]	[6M]
	b)	Describe how variables are used in C programs and explain their scope and lifetime.	[L2][CO1]	[6M]
2		Discuss all basic data types in C with examples, sizes, and range of values.	[L2][CO1]	[12M]
3	a)	example.	[L2][CO1]	[6M]
	b)	Compare and contrast logical operators with bitwise operators in C.	[L4][CO1]	[6M]
4	a)	Write short notes on if-else statement with a simple example.	[L2][CO1]	[6M]
	b)	Compare the use of if-else-if ladder and switch-case statements.	[L4][CO1]	[6M]
5	a)	Discuss the loop control structures in C.	[L2][CO1]	[6M]
	b)	Write a C program to reverse a given number using a while loop.	[L3][CO1]	[6M]
6		Why do we use function prototypes in C? Demonstrate with an example.	[L4][CO2]	[12M]
7	a)	Explain the fundamental concept of pointers in C programming	[L2][CO2]	[6M]
	b)	Define storage classes in C. Write short notes on `auto` and `static` storage classes.	[L2][CO2]	[6M]
8	a)	What is a string ?How are strings represented in C?	[L4][CO2]	[6M]
	b)	List and explain the standard library functions used for string manipulation in C.	[L1][CO2]	[6M]
9	a)	Describe how structures are declared, initialized, and accessed in C.	[L2][CO2]	[6M]
	b)	Write a program to find the student with the highest marks using an array of structures.	[L1][CO2]	[6M]
10	a)	How are arrays declared and initialized in C?	[L3][CO2]	[6M]
	b)	How can a C program accept input from the command line? Illustrate with a program.	[L3][CO2]	[6M]

Course Code: 25MC9104

UNIT -II

DATA STRUCTURES, STACKS AND QUEUES

1	a)	Define a data structure. Differentiate between linear and non-linear data	[L1][CO3]	[6M]
		structures.		
	b)	Explain the concept of a stack and list its real-life applications.	[L2][CO3]	[6M]
2	a)	Write an algorithm to implement a stack using arrays.	[L4][CO3]	[6M]
	b)	Develop a C Program to implement Stack using array.	[L6][CO3]	[6M]
3	a)	What are the fundamental operations of a stack? Illustrate with examples.	[L1][CO3]	[6M]
	b)	Explain the Array representation of a stack with diagram.	[L2][CO3]	[6M]
4	a)	Illustrate the linked list representation of a queue with diagram.	[L1][CO3]	[6M]
	b)	Write an algorithm to implement a queue using linked list.	[L4][CO3]	[6M]
5	a)	Write short notes on infix, prefix, and postfix notations.	[L3][CO3]	[6M]
	b)	Convert the infix expression (A + B) * (C - D) to postfix forms.	[L1][CO3]	[6M]
6		How can stacks be used to compute the value of a postfix expression? Illustrate	[L2][CO3]	[12M]
		with an example.		
7	a)	Explain the operations of a queue with suitable examples.	[L2][CO3]	[6M]
	b)	Write C programs that implement Queue using pointers.	[L4][CO3]	[6M]
8		Write an essay on the conversion of an infix expression to postfix notation. Explain step by step with an example.	[L3][CO3]	[12M]
9	a)	Given the infix expression $A + B * C$, what is the equivalent postfix expression?	[L2][CO3]	[6M]
	b)	Convert the prefix expression + A * B C to its equivalent infix expression.	[L2][CO3]	[6M]
10	a)	Explain how searching is performed in a linear queue. Write the algorithm.	[L2][CO3]	[6M]
	b)	write a C program to perform a searching operation on a queue using an array.	[L3][CO3]	[6M]

UNIT –III

LINKED LISTS

1	a)	Describe the structure of a node in a singly linked list	[L1][CO3]	[6M]
	b)	Discuss the advantages and disadvantages of using linked lists over arrays.	[L2][CO3]	[6M]
2		Explain the process of inserting a node at the beginning, at the end, and at a specific location in a singly linked list, with example diagrams.	[L2][CO3]	[12M]
3	a)	Discuss deletion operations in a singly linked list. What are the challenges in deleting the last node?	[L2][CO3]	[6M]
	b)	How is an element searched in a singly linked list? Compare the efficiency with array-based linear search.	[L2][CO3]	[6M]
4	a)	Discuss the implementation of a stack using a singly linked list.	[L2][CO3]	[6M]
	b)	Describe the implementation of a queue using a linked list with examples.	[L2][CO3]	[6M]
5	a)	Explain how polynomials can be represented using singly linked lists.	[L2][CO3]	[6M]
	b)	Illustrate the procedure for adding polynomials represented with node-based structures.	[L3][CO3]	[6M]
6	a)	Explain the structure and properties of a circularly linked list.	[L2][CO3]	[6M]
	b)	Outline the steps to perform insertion in a circular linked list at the front, rear, and a given position.	[L2][CO3]	[6M]
7	a)	Discuss insertion operations in a doubly linked list with suitable examples.	[L2][CO3]	[6M]
	b)	Illustrate the steps for removing nodes from a doubly linked list at various positions with examples.	[L3][CO3]	[6M]
8		Explain the process of traversing and inserting nodes in a circular linked list.	[L2][CO3]	[12M]
9	a)	Describe the concept of circular linked lists and how they differ from singly linked lists.	[L2][CO3]	[6M]
	b)	Discuss the applications and advantages of circular linked lists in real-time systems	[L2][CO3]	[6M]
10		Explain the concept of circular doubly linked lists and describe their practical applications.	[L2][CO3]	[12M]

UNIT -IV

TREES

1	a)	Define the following tree terms with examples: root, leaf, parent, child.	[L1][CO4]	[6M]
	b)	Describe sequential and linked representation of a tree.	[L2][CO4]	[6M]
2	a)	Illustrate the definition and properties of a binary tree with an example diagram.	[L3][CO4]	[6M]
	b)	Draw a binary tree for the following preorder and inorder sequences: Preorder: A B D E C F Inorder: D B E A C F	[L1][CO4]	[6M]
3	a)	Explain the different types of binary trees with example.	[L2][CO4]	[6M]
	b)	Discuss the array representation and linked-list representation of binary trees.	[L2][CO4]	[6M]
4		Write an essay on binary tree traversals: preorder, inorder, and postorder, with examples.	[L3][CO4]	[12M]
5		Explain the different operations that can be performed on a binary tree and how each operation works.	[L2][CO4]	[6M]
6		Discuss the Breadth-First Search algorithm with an example and its applications.	[L2][CO4]	[12M]
7		Explain the Depth-First Search algorithm with an example and its applications.	[L2][CO4]	[12M]
8	a)	Differentiate between adjacency matrix and adjacency list representation of graphs.	[L2][CO4]	[6M]
	b)	Explain the difference between directed and undirected graphs with examples.	[L2][CO4]	[6M]
9	a)	What is a connected component in a graph?	[L1][CO4]	[6M]
	b)	Illustrate the idea of connected components in a graph, including examples and diagrams.	[L3][CO4]	[6M]
10	a)	What is a spanning tree of a graph?	[L1][CO4]	[4M]
	b)	Describe the process of constructing a spanning tree	[L2][CO4]	[8M]
		<u>I</u>	1	

UNIT -V

SEARCHING AND SORTING

1		Explain the concept of searching in data structures and its importance.	[L2][CO5]	[12M]
2	a)	Describe the step-by-step procedure of linear search algorithm.	[L2][CO5]	[6M]
	b)	Explain with example how linear search algorithm searches for an element in an array.	[L2][CO5]	[6M]
3		Illustrate how binary search works on sorted arrays with a step-by-step example.	[L3][CO5]	[12M]
4	a)	Explain the bubble sort algorithm with a step-by-step example.	[L2][CO5]	[6M]
	b)	Write a C program that implements the bubble sorting methods to sort a given list of integers in ascending order.	[L4][CO5]	[6M]
5		Trace the execution of selection sort on a given array of integers.	[L3][CO5]	[12M]
6	a)	Show step-by-step how insertion sort arranges an array into order.	[L1][CO5]	[6M]
	b)	Write a C program that implements the insertion sorting.	[L4][CO5]	[6M]
7		Describe the quick sort algorithm using the divide-and-conquer approach with an example.	[L2][CO5]	[12M]
8	a)	Explain the merge sort algorithm with a step-by-step example.	[L1][CO5]	[6M]
	b)	Write a C program that implements the merge sorting method.	[L4][CO5]	[6M]
9	a)	Explain the heap sort algorithm and the concept of a heap.	[L1][CO5]	[6M]
	b)	Write a C program that implements the heap sorting methods to sort a given list of integers in ascending order.	[L4][CO5]	[6M]
10		Write C programs that use recursive function to perform the Linear search searching operations.	[L4][CO5]	[12M]

Prepared by:
A Radha
Assistant Professor
MCA